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“There can be many reasons for searching for representative objects. Not only can these objects
provide a characterization of the clusters, but they can often be used for further work or research,
especially when it is more economical or convenient to use a small set of 𝑘 objects instead of the
large set one started off with.”1

Abstract

We consider clustering in group decision making where the opinions are given by
pairwise comparison matrices. In particular, the k-medoids model is suggested
to classify the matrices as it has a linear programming problem formulation. Its
objective function depends on the measure of dissimilarity between the matrices but
not on the weights derived from them. With one cluster, our methodology provides
an alternative to the conventional aggregation procedures. It can also be used to
quantify the reliability of the aggregation. The proposed theoretical framework is
applied to a large-scale experimental dataset, on which it is able to automatically
detect some mistakes made by the decision-makers.
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1 Introduction
The fast development of information technology has enabled large-scale group decision
making (LGDSM): in many decision making problems, the possible number of decision-
makers (DMs) now easily reaches thousands (Garćıa-Zamora et al., 2022). However,
because the cognitive abilities of humans have not evolved parallel to the exponential
growth of data, it is necessary to aggregate the opinions of DMs (Tang and Liao, 2021;
Fan et al., 2024). For this purpose, one of the most widely used techniques is clustering:
allocating the individual judgements into groups such that judgements in the same group
(called a cluster) are more similar to each other than to those in other groups (clusters).

The Analytic Hierarchy Process (AHP) (Saaty, 1977, 1980) is a popular multi-criteria
decision making (MCDM) methodology, hence, solving group AHP (GAHP) models is
almost as old as AHP itself (Aczél and Saaty, 1983). Traditionally, there are two main
approaches to aggregating individual preferences and creating a group consensus: (a)
aggregating the individual pairwise comparison matrices (PCMs) and deriving priorities
from the common matrix (Aczél and Saaty, 1983); and (b) deriving priorities from the
individual PCMs and aggregating these priorities (Basak and Saaty, 1993). Ossadnik
et al. (2016) recommend the second option as no other aggregation technique satisfies a
comparable number of evaluation criteria. However, this approach is sensitive to extreme
opinions, the supposed consensus may not accurately portray the true group preference
(Amenta et al., 2020). Furthermore, Duleba and Szádoczki (2022) find that distance-based
aggregation outperforms conventional methods for a high number of DMs.

On the other hand, we do not know of any studies where individual PCMs are clustered
in order to aggregate them. The current paper aims to fill this research gap, which is our
main contribution to the extant literature.

The proposed clustering methodology can be used for several purposes since:
• it provides an alternative aggregation procedure if the number of clusters is

restricted to one;

• it gives information on the ability of aggregated preferences to represent the
individual preferences;

• it makes it possible to detect some mistakes in the original data, which is far from
trivial in LGDSM problems.

In addition, a crucial advantage of our aggregation method is the lack of any requirement
on the number of missing entries in the PCMs, which is an especially useful property
in LGDSM problems where the underlying pairwise comparisons are obtained via a
questionnaire that can be finished at every point (Fan et al., 2024). Naturally, a complete
PCM will have a stronger effect on clustering, but this seems to be a fair compensation
for the DMs who have devoted more effort and time to reveal their preferences.

The proposed clustering approach guarantees that the cluster centres are PCMs given
by at least one DM. This is also an attractive property because a cluster centre is difficult
to interpret if it strongly differs from individual opinions in a MCDM problem.

Last but not least, the suggested 𝑘-medoids clustering has a linear programming
(LP) formulation, which allows for imposing additional restrictions. For example, the
inconsistency of the cluster centres can be required to remain below an exogenous threshold.

The theoretical framework is applied to the experimental data of Bozóki et al. (2013).
The paper is structured as follows. The methodology is described in Section 2, and the

numerical results are presented in Section 3. Finally, Section 4 offers concluding remarks.
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2 Theoretical background
First, the mathematics underlying the proposed approach is discussed. Section 2.1 in-
troduces the necessary concepts from the literature of pairwise comparison matrices,
Section 2.2 summarises the details of cluster analysis. Section 2.3 overviews some measures
to quantify the (dis)similarity of pairwise comparison matrices, while Section 2.4 provides
a LP formulation for our 𝑘-medoids clustering model.

2.1 Pairwise comparison matrices
Pairwise comparison matrices are often used to determine the cardinal preferences of
DMs, who answer questions like “How many times is a criterion more important than
another one?” or “How many times is a given alternative better than another one with
respect to a fixed criterion?” These pairwise ratios are collected into the 𝑛 × 𝑛 pairwise
comparison matrix 𝐴 = [𝑎𝑖𝑗], where 𝑎𝑖𝑗 > 0 and 𝑎𝑖𝑗 = 1/𝑎𝑗𝑖 hold for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 𝐴 is
called consistent if 𝑎𝑖𝑗𝑎𝑗𝑘 = 𝑎𝑖𝑘 is satisfied for all 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛. Otherwise, when cardinal
transitivity is violated, the matrix is called inconsistent.

From a practical point of view, it is natural and reasonable to allow for some degree
of inconsistency. Several inconsistency indices have been proposed to measure the con-
tradictions in a pairwise comparison matrix (Bozóki and Rapcsák, 2008; Brunelli, 2018;
Csató, 2019a). In particular, Saaty (1977) has suggested the so-called inconsistency index
CI in his celebrated theory of AHP, which is an affine transformation of the dominant
eigenvalue 𝜆max of the pairwise comparison matrix 𝐴:

CI (𝐴) = 𝜆max − 𝑛

𝑛 − 1 .

This is divided by the random index 𝑅𝐼𝑛, the average CI of a large number of randomly
generated 𝑛 × 𝑛 pairwise comparison matrices to obtain the inconsistency ratio CR(𝐴) =
CI (𝐴)/𝑅𝐼𝑛. According to Saaty, CR should remain below 0.1 to accept the matrix as a
reasonable representation of consistent preferences.

Analogously, many weighting methods are available to find a positive weight vector
w = (𝑤1, 𝑤2, . . . , 𝑤𝑛) such that the ratios 𝑤𝑖/𝑤𝑗 give good approximations to the pairwise
comparisons 𝑎𝑖𝑗 (Choo and Wedley, 2004). The Logarithmic Least Squares Method (LLSM )
(Crawford and Williams, 1985; Csató, 2019b; De Graan, 1980; Fichtner, 1986; Rabinowitz,
1976) is one of the most popular:

min
∑︁
𝑖,𝑗

[︃
log 𝑎𝑖𝑗 − log

(︃
𝑤𝑖

𝑤𝑗

)︃]︃2

𝑛∑︁
𝑖=1

𝑤𝑖 = 1,

𝑤𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛.

The unique solution to this optimisation problem is given by the geometric means of the
entries in the rows:

𝑤𝑖

𝑤𝑗

=
𝑛

√︁∏︀𝑛
𝑘=1 𝑎𝑖𝑘

𝑛

√︁∏︀𝑛
𝑘=1 𝑎𝑗𝑘

Therefore, it is often called the geometric mean method.
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2.2 Cluster analysis
Clustering, the problem of dividing a set of objects into groups (clusters) such that
any object is more similar to an arbitrary object in its group than to any object in a
distinct group, is one of the most popular methods in exploratory data science. Although
no “perfect” clustering algorithm exists, perhaps the most natural solution is 𝑘-means
clustering, when each object belongs to the cluster with the nearest mean.

However, this leads to an NP-hard non-convex discrete optimisation problem. Therefore,
most state-of-the-art statistical and data science software implement a heuristic iterative
algorithm that alternates two steps: i) assigning all points to the nearest cluster centre; and
ii) recalculating the cluster centres. The operation in step ii) is quite trivial in Euclidean
spaces (take the average in every dimension), but it may be challenging if the objects do
not belong to a multidimensional Euclidean space (Majstorović et al., 2018). Furthermore,
the heuristic iterative algorithm above can converge to a local rather than global optimum.
Hence, Ágoston and E.-Nagy (2024) provide a mixed integer linear programming (MILP)
formulation to obtain an exact solution for the minimum sum-of-clustering problem that
allows for adding arbitrary linear constraints and can be solved up to 150 objects.

An alternative approach to the 𝑘-means clustering is the 𝑘-medoids problem (Kaufman
and Rousseeuw, 1986; Schubert and Rousseeuw, 2019). Here, all cluster centres should be
objects themselves, allowing for easier interpretability of the cluster centres. This seems
to be an important advantage in LGDSM since the DMs may not be willing to accept
a solution that has not been suggested by any of them. In addition, 𝑘-medoids can be
used with an arbitrary dissimilarity measure, while 𝑘-means generally requires Euclidean
distance. Last but not least, minimising the sum of pairwise dissimilarities instead of the
sum of squared Euclidean distances makes the 𝑘-medoids problem less sensitive to outliers
than the 𝑘-means problem.

For unknown reasons, the 𝑘-medoids model is not widely used and is not implemented
in usual statistical software packages. Nonetheless, the problem can be formulated as an
LP model according to Section 2.4, and solved with standard LP solvers in small and
medium size instances.

Originally, clustering was intended to form groups in Euclidean spaces, but the under-
lying idea can be applied in other fields. Clustering algorithms appear in network science,
where the goal is to classify nodes in a graph such that the nodes in a given cluster are
connected more strongly to each other than to nodes in other clusters. Other objects can
also be clustered, for example, curves or mortality tables.

To conclude, cluster analysis requires a clustering algorithm and a dissimilarity measure,
which does not necessarily be a distance. This paper considers the 𝑘-medoids problem due
to its advantages discussed above.

2.3 Quantifying the similarity of pairwise comparison matrices
Several ideas exist in the literature for computing the (dis)similarity of two pairwise
comparison matrices 𝐴 and 𝐵. Crawford and Williams (1985, p. 389) essentially introduces
the following metric:

𝐷1(𝐴, 𝐵) =

⎯⎸⎸⎸⎷
⎛⎝ 𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

(log(𝑎𝑖𝑗) − log(𝑏𝑖𝑗))2

⎞⎠.
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The original definition takes the sum only for the entries above the diagonal, but this is
equivalent to 𝐷1 except for a constant factor. Obviously, 𝐷1 is symmetric and equals 0 if
and only if 𝐴 = 𝐵. It also satisfies the triangle inequality (Crawford and Williams, 1985).

Tekile et al. (2023) measure the closeness of two complete pairwise comparison matrices
by another formula called Manhattan or 𝐿1 distance:

𝐷2(𝐴, 𝐵) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

|log(𝑎𝑖𝑗) − log(𝑏𝑖𝑗)|.

𝐷2 also satisfies the triangle inequality.
Ku lakowski et al. (2022) use another indicator, the so-called compatibility index, which

was originally defined by Saaty (2008):

𝐷3𝑢(𝐴, 𝐵) = 1
𝑛2

⎛⎝ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑏𝑗𝑖

⎞⎠ .

While 𝐷3𝑢 is symmetric, 𝐷3𝑢(𝐴, 𝐵) ≥ 𝑛2. Hence, it is worth normalising 𝐷3𝑢 as has been
done in Ágoston and Csató (2024):

𝐷3(𝐴, 𝐵) = 1
𝑛2

⎛⎝ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑎𝑖𝑗𝑏𝑗𝑖 − 1)
⎞⎠ .

𝐷3 remains symmetric, and 𝐷3(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵. However, 𝐷3 is not a
distance.

Lemma 1. Dissimilarity index 𝐷3 does not satisfy the triangle inequality.

Proof. It is sufficient to give a counterexample. Consider the following three pairwise
comparison matrices:

𝐴 =

⎡⎢⎣ 1 2 1
1/2 1 1
1 1 1

⎤⎥⎦ , 𝐵 =

⎡⎢⎣ 1 3 1
1/3 1 1
1 1 1

⎤⎥⎦ , 𝐶 =

⎡⎢⎣ 1 4 1
1/4 1 1
1 1 1

⎤⎥⎦ .

It can be checked that 𝐷3(𝐴, 𝐵) = 1/6, 𝐷3(𝐵, 𝐶) = 1/12, but 𝐷3(𝐴, 𝐶) = 1/2 > 1/4 =
𝐷3(𝐴, 𝐵) + 𝐷3(𝐵, 𝐶).

Ku lakowski et al. (2022) consider three other versions of the compatibility index (all of
them are modified to ensure 𝐷(𝐴, 𝐴) = 0 and 𝐷(𝐴, 𝐵) ≥ 0):

𝐷4(𝐴, 𝐵) = 2
𝑛(𝑛 − 1)

⎛⎝𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

max {𝑎𝑖𝑗𝑏𝑗𝑖, 𝑎𝑗𝑖𝑏𝑖𝑗} − 1
⎞⎠ ;

𝐷5(𝐴, 𝐵) = max {𝑎𝑖𝑗𝑏𝑗𝑖 − 1 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛} ;

𝐷6(𝐴, 𝐵) = − 2
𝑛(𝑛 − 1)

⎛⎝𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

min {𝑎𝑖𝑗𝑏𝑗𝑖, 𝑎𝑗𝑖𝑏𝑖𝑗} − 1
⎞⎠ .

Based on 𝐷4–𝐷6, another reasonable index could be

𝐷7(𝐴, 𝐵) = − min {𝑎𝑖𝑗𝑏𝑗𝑖 − 1 : 1 ≤ 𝑖, 𝑗 ≤ 𝑛} .
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Lemma 2. Indices 𝐷4 and 𝐷5 do not satisfy the triangle inequality.

Proof. The PCMs from the proof of Lemma 1 can be used: 𝐷4(𝐴, 𝐵) = 1/6, 𝐷4(𝐵, 𝐶) =
1/9 but 𝐷4(𝐴, 𝐶) = 1/3 > 5/18 = 𝐷4(𝐴, 𝐵)+𝐷4(𝐵, 𝐶), and 𝐷5(𝐴, 𝐵) = 1/2, 𝐷5(𝐵, 𝐶) =
1/3 but 𝐷5(𝐴, 𝐶) = 1 > 5/6 = 𝐷5(𝐴, 𝐵) + 𝐷5(𝐵, 𝐶).

Proposition 1. Indices 𝐷6 and 𝐷7 satisfy the triangle inequality, thus, they are distances
on the set of pairwise comparison matrices.

Proof. For both 𝐷6 and 𝐷7, it is sufficient to show that the triangle inequality holds
elementwise for any pairwise comparison matrices 𝐴 = [𝑎𝑖𝑗], 𝐵 = [𝑏𝑖𝑗], and 𝐶 = [𝑐𝑖𝑗].
1 = 𝑎𝑖𝑗 ≤ 𝑏𝑖𝑗 ≤ 𝑐𝑖𝑗 can be assumed without loss of generality. Then, by elementary calculus,
the following three inequalities hold:

1 − 𝑎𝑖𝑗

𝑏𝑖𝑗

+ 1 − 𝑏𝑖𝑗

𝑐𝑖𝑗

≥ 1 − 𝑎𝑖𝑗

𝑐𝑖𝑗

;

1 − 𝑎𝑖𝑗

𝑐𝑖𝑗

+ 1 − 𝑏𝑖𝑗

𝑐𝑖𝑗

≥ 1 − 𝑎𝑖𝑗

𝑏𝑖𝑗

;

1 − 𝑎𝑖𝑗

𝑏𝑖𝑗

+ 1 − 𝑎𝑖𝑗

𝑐𝑖𝑗

≥ 1 − 𝑏𝑖𝑗

𝑐𝑖𝑗

.

Fichtner (1984) verifies that the popular eigenvector method (Saaty, 1977) can be
defined by a metric, too. However, although it satisfies the requirements of a distance, it
is discontinuous.

All of the above dissimilarity measures 𝐷1–𝐷7 are invariant under the relabeling of
the alternatives. Consequently, they are invariant to transposition, that is,

𝐷𝑖(𝐴, 𝐵) = 𝐷𝑖(𝐴⊤, 𝐵⊤),

where 𝐴⊤ is the transpose of the pairwise comparison matrix 𝐴.
Since the input of the 𝑘-medoids problem is the dissimilarity matrix of the objects, any

of the indices 𝐷1–𝐷7 can be used in the proposed methodology. Our numerical experiment
will consider 𝐷1 and 𝐷3.

2.4 An LP formulation of the 𝑘-medoids clustering problem
Assume that the 𝑚 × 𝑚 matrix Δ = [𝛿𝑖𝑗] contains the (pairwise) dissimilarities between
any two of the 𝑚 objects (individual PCMs). For example, 𝛿𝑖𝑗 = 𝐷1

(︁
𝐴(𝑖), 𝐴(𝑗)

)︁
if measure

𝐷1 is used to determine the dissimilarity of the preferences given by matrices 𝐴(𝑖) and 𝐴(𝑗)

of decision makers 𝑖 and 𝑗. Let 𝑀 denote the set of integers {1, . . . , 𝑚}.
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Table 1: Sample sizes in the experimental database

Label Type Size (𝑛) Number of PCMs (𝑚)
M4 Objective (map) 4 66
M6 Objective (map) 6 77
M8 Objective (map) 8 82
S4 Subjective (summer house) 4 68
S6 Subjective (summer house) 6 77
S8 Subjective (summer house) 8 78

The 𝑘-medoids problem is as follows (see, for instance, Vinod (1969)):
𝑚∑︁

𝑖=1

𝑚∑︁
𝑗=1

𝛿𝑖𝑗𝑥𝑖𝑗 → min (1)

s.t.
𝑚∑︁

𝑗=1
𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ 𝑀 (2)

𝑥𝑖𝑗 ≤ 𝑦𝑗 ∀ 𝑖, 𝑗 ∈ 𝑀 (3)
𝑚∑︁

𝑗=1
𝑦𝑗 = 𝑘 (4)

𝑥𝑖𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑀

𝑦𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝑀

In this formulation, the binary variable 𝑦𝑗 equals one if object 𝑗 is a cluster centre (and
zero otherwise), while 𝑥𝑖𝑗 equals one if object 𝑖 is placed in the cluster whose centre is
object 𝑗 (and zero otherwise). Constraint (4) ensures that there are 𝑘 different cluster
centres. According to (2), each object is classified into exactly one cluster. Finally, due to
the constraints (3), object 𝑖 can be associated with object 𝑗 (𝑥𝑖𝑗 = 1) only if object 𝑗 is a
cluster centre, namely, 𝑦𝑗 = 1.

3 Numerical results
Bozóki et al. (2013) have collected 454 pairwise comparison matrices in a controlled
experiment where even the questioning order is known for each matrix. However, here we
use only the final complete pairwise comparison matrices. The matrices are distinguished
by their size (𝑛 = 4, 𝑛 = 6, 𝑛 = 8 alternatives) and type (objective, where the students
compared maps; subjective, where the students compared summer houses). The sample
sizes are reported in Table 1.

3.1 Analysing a sample of objective type
In the case of dataset M4, the “correct” consistent pairwise comparison matrix provided
by the ratios of country areas that appear on the map are known:⎡⎢⎢⎢⎣

1 1.691 0.282 0.770
0.591 1 0.167 0.455
3.544 5.991 1 2.725
1.300 2.198 0.367 1

⎤⎥⎥⎥⎦ .
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0.01

0.02

0.03

Cluster #1 Cluster #2

Figure 1: Distribution of inconsistency ratios CR, dataset M4, 𝑘 = 2 clusters

Figure 2: Approximated coordinates of PCMs, dataset M4, measure 𝐷3

Notes: The two clusters are represented by red dots and blue squares. A darker mark is associated with a
higher inconsistency. The cluster centers are green and have double size.

For 𝑘 = 2 clusters, the cluster centres coincide for both dissimilarity measures 𝐷1 and 𝐷3:

𝐶𝐶
(1)
1 = 𝐶𝐶

(1)
3 =

⎡⎢⎢⎢⎣
1 1.500 0.286 0.833

0.667 1 0.154 0.435
3.500 6.500 1 2.300
1.200 2.300 0.435 1

⎤⎥⎥⎥⎦ ,

and

𝐶𝐶
(2)
1 = 𝐶𝐶

(2)
3 =

⎡⎢⎢⎢⎣
1 1.200 0.400 0.909

0.833 1 0.200 0.500
2.500 5.000 1 2.300
1.100 2.000 0.500 1

⎤⎥⎥⎥⎦ .

The two clusters are the same: 47 matrices belong to first and 19 to the second group.
Figure 1 shows boxplots for the inconsistency ratios CR in the two clusters.
We have used multidimensional scaling (MDS) to visualise the pairwise comparison

matrices (Kruskal, 1964; Kruskal and Wish, 1978). This technique places each matrix
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into a lower-dimensional space such that the original distances are preserved to the extent
possible. In Figure 2, red dots and blue squares represent the two clusters. A darker
mark is associated with a higher inconsistency. The two cluster centres are green and have
double size. Clearly, the clusters are not determined by the inconsistency of the matrices.

The main findings can be summarised as follows:

• The clusters are quite balanced with respect to the number of matrices in them;

• The results are insensitive to the dissimilarity measure (𝐷1 or 𝐷3) used;

• The two groups are not distinguished by the level of inconsistency, although the
variance of CR is somewhat higher for the first group.

The analysis has been repeated with higher numbers of clusters. A strong relationship
remains between the resulting groups for different values of 𝑘, as well as for the two
dissimilarity measures 𝐷1 and 𝐷3.

In sample M8 with measure 𝐷3 and 𝑘 = 2 clusters, an interesting example has been
found that uncovers a possible application of our methodology. The cluster centres are:

𝐶𝐶
(1)
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1.800 0.769 0.556 1.800 5.000 1.100 3.000
0.556 1 0.455 0.313 1.100 2.700 0.909 1.500
1.300 2.200 1 0.833 3.000 7.000 1.800 3.300
1.800 3.200 1.200 1 5.000 10.100 2.200 6.000
0.556 0.909 0.333 0.200 1 2.300 0.625 1.400
0.200 0.370 0.143 0.099 0.435 1 0.250 0.769
0.909 1.100 0.556 0.455 1.600 4.000 1 2.200
0.333 0.667 0.303 0.167 0.714 1.300 0.455 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

𝐶𝐶
(2)
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1.500 0.500 0.500 3.000 6.000 1.200 3.000
0.667 1 0.500 0.333 1.500 3.000 0.667 1.500
2.000 2.000 1 0.667 5.000 8.000 1.500 4.000
2.000 3.000 1.500 1 4.500 0.100 2.000 5.000
0.333 0.667 0.200 0.222 1 2.000 0.667 1.200
0.167 0.333 0.125 10.000 0.500 1 0.286 0.500
0.833 1.500 0.667 0.500 1.500 3.500 1 2.500
0.333 0.667 0.250 0.200 0.833 2.000 0.400 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first cluster contains 81 matrices and the second cluster consists of only one. The
two cluster centres are similar except for the preference between the fourth and sixth
alternatives (countries), highlighted by bold font. Since the pairwise comparisons show
the ratio of the area of two countries, the only PCM in the second cluster is almost certain
to contain a typo: the student has thought that country 4 is ten times larger than country
6 but mistakenly written the reciprocal 1/10, which is a standard mistake. Unsurprisingly,
the associated PCM fundamentally differs from all other matrices, and the presented
clustering approach is able to detect the outlier without any other specification. This can
be highly advantageous in LGDSM problems.

3.2 Analysing a sample of subjective type
When the students have compared summer houses, no “natural” PCM exists around which
the opinions are centred.
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Table 2: Contingency table for sample S4

CL(1)
3 CL(2)

3 CL(3)
3 CL(4)

3
∑︀

CL(1)
1 25 0 1 0 26

CL(2)
1 0 9 5 1 15

CL(3)
1 2 0 0 7 9

CL(4)
1 0 0 6 12 18∑︀ 27 9 12 20 68

Four clusters, measures 𝐷1 (row) and 𝐷3 (column)

Since sample S4 contains four different houses, we have started the analysis with four
clusters, supposing that each alternative will be the best in one cluster.

For the measure 𝐷1, the cluster centres are as follows:

CC (1)
1 =

⎡⎢⎢⎢⎣
1 2.000 7.000 3.000

0.500 1 5.000 2.000
0.143 0.200 1 0.500
0.333 0.500 2.000 1

⎤⎥⎥⎥⎦ , CC (2)
1 =

⎡⎢⎢⎢⎣
1 1.500 0.500 0.333

0.667 1 0.333 0.333
2.000 3.000 1 0.667
3.000 3.000 1.500 1

⎤⎥⎥⎥⎦ ,

CC (3)
1 =

⎡⎢⎢⎢⎣
1 3.000 5.000 0.400

0.333 1 3.000 0.143
0.200 0.333 1 0.111
2.500 7.000 9.000 1

⎤⎥⎥⎥⎦ , CC (4)
1 =

⎡⎢⎢⎢⎣
1 6.000 3.000 3.000

0.167 1 0.200 0.200
0.333 5.000 1 0.500
0.333 5.000 2.000 1

⎤⎥⎥⎥⎦ .

On the other hand, for the measure 𝐷3:

CC (1)
3 =

⎡⎢⎢⎢⎣
1 2.000 7.000 3.000

0.500 1 5.000 2.000
0.143 0.200 1 0.500
0.333 0.500 2.000 1

⎤⎥⎥⎥⎦ , CC (2)
3 =

⎡⎢⎢⎢⎣
1 1.500 0.333 0.200

0.667 1 0.333 0.200
3.000 3.000 1 0.500
5.000 5.000 2.000 1

⎤⎥⎥⎥⎦ .

CC (3)
3 =

⎡⎢⎢⎢⎣
1 4.000 1.500 2.000

0.250 1 0.333 0.667
0.667 3.000 1 3.000
0.500 1.500 0.333 1

⎤⎥⎥⎥⎦ , CC (4)
3 =

⎡⎢⎢⎢⎣
1 5.000 3.000 1.000

0.200 1 0.500 0.143
0.333 2.000 1 0.200
1.000 7.000 5.000 1

⎤⎥⎥⎥⎦ .

Note that the centres of the first clusters (matrices CC (1)
1 and CC (1)

3 ) coincide. The cluster
sizes are 26, 15, 9, 18 for index 𝐷1 and 27, 9, 12, 20 for index 𝐷3.

The contingency table of the two groupings is shown in Table 2. The similarity of the
clusters is lower than in the objective task (Section 3.1), but the largest cluster almost
coincides.

The inconsistency ratios of the cluster centres are 0.007, 0.008, 0.028, 0.063 in the
case of 𝐷1, while 0.007, 0.009, 0.022, 0.013 in the case of 𝐷3. Similar to the results of
Section 3.1, the clusters are relatively uniform with respect to the level of inconsistency
as can be seen in Figure 3. Even though the cluster centres are slightly less inconsistent
for 𝐷3, each centre has an acceptable inconsistency according to the famous 10% rule
of thumb. Naturally, this is not guaranteed in other datasets but the LP model of the
𝑘-medoids problem (Section 2.4) might contain any (linear) restriction on the inconsistency
of the cluster centres.
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(a) Measure 𝐷1

0.1
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0.3

Cluster #1 Cluster #2 Cluster #3 Cluster #4

(b) Measure 𝐷3

0.1

0.2

0.3

Cluster #1 Cluster #2 Cluster #3 Cluster #4

Figure 3: Distribution of inconsistency ratios CR, dataset S4, 𝑘 = 4 clusters

As the cluster centres are PCMs, the associated priority weights can help the interpret-
ation of the clusters. To that end, we have used the geometric mean method (Section 2.1).
For the dissimilarity measure 𝐷1, they are as follows:⎡⎢⎢⎢⎣

0.495
0.291
0.067
0.148

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.155
0.114
0.310
0.420

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.260
0.102
0.049
0.589

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.511
0.054
0.180
0.254

⎤⎥⎥⎥⎦ .

On the other hand, for index 𝐷3:⎡⎢⎢⎢⎣
0.495
0.291
0.067
0.148

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.109
0.089
0.284
0.517

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.403
0.105
0.339
0.153

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
0.368
0.065
0.113
0.455

⎤⎥⎥⎥⎦ .

Against our conjecture, the second and the third summer houses do not have the highest
priority in any cluster; the first and the last alternatives are the best in two clusters,
respectively.
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Aggregating the individual pairwise comparison matrices by the geometric means of
the entries (Aczél and Saaty, 1983) and applying LLSM to the common matrix results in
the following priority vector: ⎡⎢⎢⎢⎣

0.410
0.164
0.146
0.279

⎤⎥⎥⎥⎦ . (5)

The implied ranking 1 ≻ 4 ≻ 2 ≻ 3 differs from the ranking in any cluster centre, thus,
the aggregated ranking does not correspond to the preferences of any group.

Clustering may provide an aggregation procedure if there is only one cluster, whose
centre represents “best” the whole set of PCMs. The cluster centres are

CC 1 =

⎡⎢⎢⎢⎣
1 2.000 3.000 1.500

0.500 1 2.000 0.500
0.333 0.500 1 0.250
0.667 2.000 4.000 1

⎤⎥⎥⎥⎦ and CC 3 =

⎡⎢⎢⎢⎣
1 2.000 1.500 1.000

0.500 1 0.667 0.667
0.667 1.500 1 0.667
1.000 1.500 1.500 1

⎤⎥⎥⎥⎦
for measures 𝐷1 and 𝐷3, respectively, and the corresponding weight vectors are⎡⎢⎢⎢⎣

0.381
0.185
0.099
0.334

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
0.319
0.166
0.219
0.296

⎤⎥⎥⎥⎦ ,

which lead to the rankings 1 ≻ 4 ≻ 2 ≻ 3 and 1 ≻ 4 ≻ 3 ≻ 2, respectively. The rankings
are identical to the ranking derived from the weights (5) associated with the aggregated
matrix, except for a rank reversal at the bottom in the case of dissimilarity measure 𝐷3.
On the other hand, the relative weights of the first and the last alternatives are closer to
each other according to both clusters than according to the result obtained by a reasonable
aggregation of the individual matrices given in (5).

3.3 The appropriate number of clusters
There is no unique or standard procedure to determine the appropriate number of clusters.
Nonetheless, a popular choice is the so-called “elbow” method: the sum of distances
from the cluster centres (the objective function of the LP in Section 2.4) is plotted for
all relevant numbers of clusters, and the value for which the decreasing trend flattens is
chosen. The corresponding chart for sample S4 is shown in Figure 4, suggesting that 𝑘 = 4
or 𝑘 = 5 clusters is the best option as a further increase in 𝑘 does not lead to a substantial
reduction in the optimal value of the objective function.

A more sophisticated version of the “elbow” method is the gap statistic (Tibshirani
et al., 2001). Although it “is designed to be applicable to any clustering method and distance
measure” (Tibshirani et al., 2001, p. 411), during the implementation uniformly distributed
samples are generated in a multivariate Euclidean space. Therefore, this method does not
seem to be suitable for our problem.

Several other approaches are available to obtain the optimal number of clusters but
the majority of them are based on the sum of squares. Although the variance could be
calculated, we think it has no common meaning for the dissimilarity measures considered.

One exception is the silhouette method (Kaufman and Rousseeuw, 1990), which uses
the dissimilarity matrix Δ but does not rely on any specific property of Euclidean spaces.
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Figure 4: The optimum as a function of the number of clusters, sample S4

Table 3: Mean silhouette values, sample S4

Number of clusters Measure 𝐷1 Measure 𝐷3

2 0.286 0.467
3 0.285 0.407
4 0.260 0.503
5 0.310 0.510
6 0.293 0.494
7 0.302 0.477
8 0.321 0.488
9 0.337 0.535
10 0.345 0.568
11 0.348 0.556
12 0.325 0.571
13 0.325 0.553
14 0.330 0.545
15 0.327 0.538
16 0.324 0.514
17 0.308 0.512
18 0.310 0.523
19 0.306 0.521
20 0.310 0.518

The average silhouette values are given in Table 3. They tend to grow for small values
of 𝑘, the maximum is reached at 11 (12) clusters in the case of index 𝐷1 (𝐷3). However,

13



these numbers seem to be unreasonably high.
Another common method is using a hierarchical clustering method and choosing the

number of clusters based on dendrograms, which are presented in Figure 5. Note that
Figure 5.a has been derived by the square of 𝐷1 to make the structure more visible. The
dendrogram shows the level of dissimilarity at which the corresponding objects are merged
into the same cluster. According to these dendrograms, the number of clusters 𝑘 should
be between three and six in our case.

To conclude, we currently could not recommend any method that immediately gives the
number of clusters. The problem is somewhat analogous to the choice of the dissimilarity
measure, where there is no perfect solution, too.

4 Conclusions
This paper has provided a new perspective on group decision making, especially large-scale
group decision making, by proposing the 𝑘-medoids clustering for pairwise comparison
matrices. Our method has some advantages over other solutions:

• it is independent of the specification of the weighting method;

• it can handle incomplete data such that the impact of incomplete pairwise
comparison matrices, which contain less information, is inherently reduced;

• it is more robust to outliers than the 𝑘-means clustering algorithm;

• the cluster centres are guaranteed to be individual pairwise comparison matrices,
making them easier to accept by the decision-makers;

• its LP formulation allows for adding various restrictions, for example, regarding
the inconsistency of the cluster centres.

The suggested approach has been used to analyse the experimental data of Bozóki et al.
(2013), which demonstrated that it (i) can provide an alternative aggregation technique by
choosing one cluster; (b) is able to automatically detect outliers.

Hopefully, all practitioners dealing with data from large-scale group decision-making
may benefit from using the clustering model presented here. Further investigations
are especially welcome because, at the moment, there are few results on choosing the
dissimilarity measure underlying the 𝑘-medoids algorithm or the appropriate number of
clusters 𝑘.
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